2019 USAJMO Problems/Problem 5
Let be a nonnegative integer. Determine the number of ways that one can choose sets , for integers with , such that:
1. for all , the set has elements; and
2. whenever and .
Proposed by Ricky Liu
Solution
We claim the answer is .
Proof: Note that there are ways to choose , because there are ways to choose which number is, ways to choose which number to append to make , ways to choose which number to append to make ... After that, note that contains the in and 1 other element chosen from the 2 elements in not in so there are 2 ways for . By the same logic there are 2 ways for as well so total ways for all , so doing the same thing more times yields a final answer of , as desired.
-Stormersyle