2019 AIME I Problems/Problem 13
Problem 13
Triangle has side lengths
,
, and
. Points
and
are on ray
with
. The point
is a point of intersection of the circumcircles of
and
satisfying
and
. Then
can be expressed as
, where
,
,
, and
are positive integers such that
and
are relatively prime, and
is not divisible by the square of any prime. Find
.
Solution
Define to be the circumcircle of
and
to be the circumcircle of
.
Because of exterior angles,
But because
is cyclic. In addition,
because
is cyclic. Therefore,
. But
, so
. Using Law of Cosines on
, we can figure out that
. Since
,
. We are given that
and
, so we can use Law of Cosines on
to find that
.
Let be the intersection of segment
and
. Using Power of a Point with respect to
within
, we find that
. We can also apply Power of a Point with respect to
within
to find that
. Therefore,
.
See Also
2019 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.