2019 AIME I Problems/Problem 8

Revision as of 19:16, 14 March 2019 by Emathmaster (talk | contribs) (Solution(BASH))

The 2019 AIME I takes place on March 13, 2019.

Problem 8

Solution(BASH)

Remember $sin^2(x)+cos^2(x)=1$. This means $sin^{10}(x)+cos^{10}(x)=(sin^2(x)+cos^2(x))sin^{10}(x)+(sin^2(x)+cos^2(x))cos^{10})(x)=sin^{12}(x)+cos^{12}(x)+sin^2(x)cos^{10}(x)+sin^{10}(x)cos^{2}(x)=sin^{12}(x)+cos^{12}(x)+sin^2(x)cos^{2}(x)[sin^8(x)+cos^8(x)]$. Let us look at $sin^8(x)+cos^8(x)=(sin^2(x)+cos^2(x))sin^{8}(x)+(sin^2(x)+cos^2(x))cos^{8})(x)=sin^{10}(x)+cos^{10})(x)

Solution 2 (Another BASH)

See Also

2019 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png