2019 AIME I Problems
Contents
Problem 1
Consider the integer Find the sum of the digits of
.
Problem 2
Jenn randomly chooses a number from
. Bela then randomly chooses a number
from
distinct from
. The value of
is at least
with a probability that can be expressed in the form
where
and
are relatively prime positive integers. Find
.
Problem 3
In ,
,
, and
. Points
and
lie on
, points
and
lie on
, and points
and
lie on
, with
. Find the area of hexagon
.
Problem 4
A soccer team has 22 available players. A fixed set of 11 players starts the game, while the other 11 are available as substitutes. During the game, the coach may make as many as 3 substitutions, where any one of the 11 players in the game is replaced by one of the substitutes. No player removed from the game may reenter the game, although a substitute entering the game may be replaced later. No two substitutions can happen at the same time. The players involved and the order of the substitutions matter. Let be the number of ways the coach can make substitutions during the game (including the possibility of making no substitutions). Find the remainder when
is divided by 1000.
Problem 5
A moving particle starts at the point and moves until it hits one of the coordinate axes for the first time. When the particle is at the point
, it moves at random to one of the points
,
, or
, each with probability
, independently of its previous moves. The probability that it will hit the coordinate axes at
is
, where
and
are positive integers. Find
.
Problem 6
In convex quadrilateral side
is perpendicular to diagonal
, side
is perpendicular to diagonal
,
, and
. The line through
perpendicular to side
intersects diagonal
at
with
. Find
.
Problem 7
There are positive integers and
that satisfy the system of equations
\begin{align*}
\log_{10} x + 2 \log_{10} (\gcd(x,y)) &= 60 \\ \log_{10} y + 2 \log_{10} (\text{lcm}(x,y)) &= 570.
\end{align*}Let
be the number of (not necessarily distinct) prime factors in the prime factorization of
, and let
be the number of (not necessarily distinct) prime factors in the prime factorization of
. Find
.
Problem 8
Let be a real number such that
. Then
where
and
are relatively prime positive integers. Find
.