2019 AMC 10B Problems/Problem 24

Revision as of 23:17, 18 February 2019 by Sevenoptimus (talk | contribs) (Corrected a minor issue)
The following problem is from both the 2019 AMC 10B #24 and 2019 AMC 12B #22, so both problems redirect to this page.

Problem

Define a sequence recursively by $x_0=5$ and \[x_{n+1}=\frac{x_n^2+5x_n+4}{x_n+6}\] for all nonnegative integers $n.$ Let $m$ be the least positive integer such that \[x_m\leq 4+\frac{1}{2^{20}}.\]In which of the following intervals does $m$ lie?

$\textbf{(A) } [9,26] \qquad\textbf{(B) } [27,80] \qquad\textbf{(C) } [81,242]\qquad\textbf{(D) } [243,728] \qquad\textbf{(E) } [729,\infty)$

Solution 1

We first prove that $x_n > 4$ for all $n \ge 0$, by induction. Observe that \[x_{n+1} - 4 = \frac{x_n^2 + 5x_n + 4 - 4(x_n+6)}{x_n+6} = \frac{(x_n - 4)(x_n+5)}{x_n+6}\] so (since $x_n$ is clearly positive for all $n$, from the initial definition), $x_{n+1} > 4$ if and only if $x_{n} > 4$.

We similarly prove that $x_n$ is decreasing, since \[x_{n+1} - x_n = \frac{x_n^2 + 5x_n + 4 - x_n(x_n+6)}{x_n+6} = \frac{4-x_n}{x_n+6} < 0\]

Now we need to estimate the value of $x_{n+1}-4$, which we can do using the rearranged equation \[x_{n+1} - 4 = (x_n-4)\cdot\frac{x_n + 5}{x_n+6}\] Since $x_n$ is decreasing, $\frac{x_n + 5}{x_n+6}$ is clearly also decreasing, so we have \[\frac{9}{10} < \frac{x_n + 5}{x_n+6} \le \frac{10}{11}\] and \[\frac{9}{10}(x_n-4) < x_{n+1} - 4 \le \frac{10}{11}(x_n-4)\]

This becomes \[\left(\frac{9}{10}\right)^n = \left(\frac{9}{10}\right)^n \left(x_0-4\right) < x_{n} - 4 \le \left(\frac{10}{11}\right)^n \left(x_0-4\right) = \left(\frac{10}{11}\right)^n\] The problem thus reduces to finding the least value of $n$ such that \[\left(\frac{9}{10}\right)^n < x_{n} - 4 \le \frac{1}{2^{20}} \text{  and  }  \left(\frac{10}{11}\right)^{n-1} > x_{n-1} - 4 > \frac{1}{2^{20}}\]

Taking logarithms, we get $n \ln \frac{9}{10} < -20 \ln 2$ and $(n-1)\ln \frac{10}{11} > -20 \ln 2$, i.e.

\[n > \frac{20\ln 2}{\ln\frac{10}{9}} \text{  and  }  n-1 < \frac{20\ln 2}{\ln\frac{11}{10}}\]

As approximations, we can use $\ln\frac{10}{9} \approx \frac{1}{9}$, $\ln\frac{11}{10} \approx \frac{1}{10}$, and $\ln 2\approx 0.7$. These allow us to estimate that \[126 < n < 141\] which gives the answer as $\boxed{\textbf{(C) } [81,242]}$.

See Also

2019 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2019 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png