2019 AMC 12A Problems/Problem 12
Contents
Problem
Positive real numbers and
satisfy
and
. What is
?
Solution 1
Let , so that
and
. Then we have
.
We therefore have , and deduce
. The solutions to this are
.
To solve the problem, we now find .
Solution 2 (slightly simpler)
After obtaining , notice that the required answer is
, as before.
Solution 3
From the given data, , or
We know that , so
.
Thus , so
, so
.
Solving for , we obtain
.
Easy resubstitution further gives . Simplifying, we obtain
.
Looking back at the original problem, we have What is ?
Deconstructing this expression using log rules, we get .
Plugging in our known values, we get or
.
Our answer is .
Solution 4
Multiplying the first equation by , we obtain
.
From the second equation we have .
Then, .
Solution 5
Let and
.
Writing the first given as
and the second as
, we get
and
.
Solving for we get
.
Our goal is to find . From the above, it is equal to
.
See Also
2019 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 11 |
Followed by Problem 13 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.