2019 AMC 12B Problems/Problem 16
Problem
Lily pads numbered from to lie in a row on a pond. Fiona the frog sits on pad , a morsel of food sits on pad , and predators sit on pads and . At each unit of time the frog jumps either to the next higher numbered pad or to the pad after that, each with probability , independently from previous jumps. What is the probability that Fiona skips over pads and and lands on pad ?
Solution
First, notice that Fiona, if she jumps over the predator on pad , \textbf{must} land on pad . Similarly, she must land on if she makes it past . Thus, we can split it into smaller problems counting the probability Fiona skips , Fiona skips (starting at ) and \textit{doesn't} skip (starting at ). Incidentally, the last one is equivalent to the first one minus .
Let's call the larger jump a -jump, and the smaller a -jump.
For the first mini-problem, let's see our options. Fiona can either go (probability of \frac{1}{8}), or she can go (probability of \frac{1}{4}). These are the only two options, so they together make the answer . We now also know the answer to the last mini-problem ().
For the second mini-problem, Fiona \textit{must} go (probability of \frac{1}{4}). Any other option results in her death to a predator.
Thus, the final answer is
See Also
2019 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 15 |
Followed by Problem 17 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |