GET READY FOR THE AMC 12 WITH AoPS
Learn with outstanding instructors and top-scoring students from around the world in our AMC 12 Problem Series online course.
CHECK SCHEDULE

2019 AMC 12A Problems

Revision as of 15:21, 9 February 2019 by P groudon (talk | contribs) (I'm going to fill in the problems over several different edits in case someone is editing while I am. Also, I am not sure how to put square bullet points for problem 6, so it would be great if someone could do that.)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem 1

The area of a pizza with radius $4$ is $N$ percent larger than the area of a pizza with radius $3$ inches. What is the integer closest to $N$?

$\textbf{(A) } 25 \qquad\textbf{(B) } 33 \qquad\textbf{(C) } 44\qquad\textbf{(D) } 66 \qquad\textbf{(E) } 78$

Problem 2

Suppose $a$ is $150\%$ of $b$. What percent of $a$ is $3b$?

$\textbf{(A) } 50 \qquad \textbf{(B) } 66\frac{2}{3} \qquad \textbf{(C) } 150 \qquad \textbf{(D) } 200 \qquad \textbf{(E) } 450$

Problem 3

A box contains $28$ red balls, $20$ green balls, $19$ yellow balls, $13$ blue balls, $11$ white balls, and $9$ black balls. What is the minimum number of balls that must be drawn from the box without replacement to guarantee that at least $15$ balls of a single color will be drawn$?$

$\textbf{(A) } 75 \qquad\textbf{(B) } 76 \qquad\textbf{(C) } 79 \qquad\textbf{(D) } 84 \qquad\textbf{(E) } 91$

Problem 4

What is the greatest number of consecutive integers whose sum is $45 ?$

$\textbf{(A) } 9 \qquad\textbf{(B) } 25 \qquad\textbf{(C) } 45 \qquad\textbf{(D) } 90 \qquad\textbf{(E) } 120$

Problem 5

Two lines with slopes $\dfrac{1}{2}$ and $2$ intersect at $(2,2)$. What is the area of the triangle enclosed by these two lines and the line $x+y=10  ?$

$\textbf{(A) } 4 \qquad\textbf{(B) } 4\sqrt{2} \qquad\textbf{(C) } 6 \qquad\textbf{(D) } 8 \qquad\textbf{(E) } 6\sqrt{2}$

Problem 6

Problem 7

Melanie computes the mean $\mu$, the median $M$, and the modes of the $365$ values that are the dates in the months of $2019$. Thus her data consist of $12$ $1\text{s}$, $12$ $2\text{s}$, . . . , $12$ $28\text{s}$, $11$ $29\text{s}$, $11$ $30\text{s}$, and $7$ $31\text{s}$. Let $d$ be the median of the modes. Which of the following statements is true?

$\textbf{(A) } \mu < d < M \qquad\textbf{(B) } M < d < \mu \qquad\textbf{(C) } d = M =\mu \qquad\textbf{(D) } d < M < \mu \qquad\textbf{(E) } d < \mu < M$

Problem 8

For a set of four distinct lines in a plane, there are exactly $N$ distinct points that lie on two or more of the lines. What is the sum of all possible values of $N$?

$\textbf{(A) } 14 \qquad \textbf{(B) } 16 \qquad \textbf{(C) } 18 \qquad \textbf{(D) } 19 \qquad \textbf{(E) } 21$

Problem 9

A sequence of numbers is defined recursively by $a_1 = 1$, $a_2 = \frac{3}{7}$, and \[a_n=\frac{a_{n-2} \cdot a_{n-1}}{2a_{n-2} - a_{n-1}}\]for all $n \geq 3$ Then $a_{2019}$ can be written as $\frac{p}{q}$, where $p$ and $q$ are relatively prime positive inegers. What is $p+q ?$

$\textbf{(A) } 2020 \qquad\textbf{(B) } 4039 \qquad\textbf{(C) } 6057 \qquad\textbf{(D) } 6061 \qquad\textbf{(E) } 8078$

Problem 10

The figure below shows $13$ circles of radius $1$ within a larger circle. All the intersections occur at points of tangency. What is the area of the region, shaded in the figure, inside the larger circle but outside all the circles of radius $1 ?$

[asy]unitsize(20);filldraw(circle((0,0),2*sqrt(3)+1),rgb(0.5,0.5,0.5));filldraw(circle((-2,0),1),white);filldraw(circle((0,0),1),white);filldraw(circle((2,0),1),white);filldraw(circle((1,sqrt(3)),1),white);filldraw(circle((3,sqrt(3)),1),white);filldraw(circle((-1,sqrt(3)),1),white);filldraw(circle((-3,sqrt(3)),1),white);filldraw(circle((1,-1*sqrt(3)),1),white);filldraw(circle((3,-1*sqrt(3)),1),white);filldraw(circle((-1,-1*sqrt(3)),1),white);filldraw(circle((-3,-1*sqrt(3)),1),white);filldraw(circle((0,2*sqrt(3)),1),white);filldraw(circle((0,-2*sqrt(3)),1),white);[/asy]

$\textbf{(A) } 4 \pi \sqrt{3} \qquad\textbf{(B) } 7 \pi \qquad\textbf{(C) } \pi(3\sqrt{3} +2) \qquad\textbf{(D) } 10 \pi (\sqrt{3} - 1) \qquad\textbf{(E) } \pi(\sqrt{3} + 6)$

Problem 11

Problem 12

Problem 13

Problem 14

Problem 15

Problem 16

Problem 17

Problem 18

Problem 19

Problem 20

Problem 21

Problem 22

Problem 23

Problem 24

Problem 25