1983 AHSME Problems/Problem 4
Revision as of 17:17, 26 January 2019 by Sevenoptimus (talk | contribs) (Fixed solution to match problem statement)
Problem 4
In the adjoining plane figure, sides and are parallel, as are sides and , and sides and . Each side has length . Also, . The area of the figure is
Solution
By rotating the diagram and drawing the dotted lines, we see that the figure can be divided into four equilateral triangles, each of side length . The area of one such equilateral triangle is , which gives a total of , or .
See Also
1983 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.