2012 AIME I Problems/Problem 10
Contents
Problem 10
Let be the set of all perfect squares whose rightmost three digits in base are . Let be the set of all numbers of the form , where is in . In other words, is the set of numbers that result when the last three digits of each number in are truncated. Find the remainder when the tenth smallest element of is divided by .
Solution 1
It is apparent that for a perfect square to satisfy the constraints, we must have or Now in order for to be a multiple of at least one of and must be a multiple of and since and are in different residue classes mod one term must have all the factors of and thus must be a multiple of Furthermore, each of and must have at least two factors of since otherwise could not possibly be divisible by So therefore the conditions are satisfied if either or is divisible by or equivalently if Counting up from to we see that the tenth value of is and thus the corresponding element in is
Solution 2
Notice that is , ends in . In general, if ends in , ends in 256 because and . It is clear that we want all numbers whose squares end in that are less than .
Firstly, we know the number has to end in a or a . Let's look at the ones ending in .
Assume that the second digit of the three digit number is . We find that the last digits of is in the form . However, the last two digits need to be a . Thus, similarly trying all numbers from to , we see that only 1 for the middle digit works. Carrying out the multiplication, we see that the last digits of is in the form . We want to be equal to . Thus, we see that a is or . Thus, the numbers that work in this case are and .
Next, let's look at the ones ending in . Carrying out a similar technique as above, we see that the last digits of is in the form . We want to be equal to . We see that only and work. Thus, we see that only and work.
We order these numbers to get , , . We want the number in order which is .
See also
2012 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.