2018 AMC 8 Problems/Problem 23
How many positive three-digit integers have a remainder of 2 when divided by 6, a remainder of 5 when divided by 9, and a remainder of 7 when divided by 11?
Solution
We will use constructive counting to solve this. There are cases: Either all points are adjacent, or exactly points are adjacent. If all points are adjacent, then we obviously have choices. If we have exactly adjacent points, then we will have places to put the adjacent points and also places to put the remaining point, so we have choices. The total amount of choices is . Thus our answer is
Solution 2 (Complementary)
We can decide adjacent points with choices. The remaining point will have choices. However, we have counted the case with adjacent points twice, so we need to subtract this case once. The case with the adjacent points has arrangements, so our answer is
See Also
2018 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 22 |
Followed by Problem 24 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.