2018 AMC 8 Problems/Problem 22

Revision as of 15:32, 21 November 2018 by Ancientwarrior (talk | contribs) (Problem 22)

Problem 22

Point $E$ is the midpoint of side $\overline{CD}$ in square $ABCD,$ and $\overline{BE}$ meets diagonal $\overline{AC}$ at $F.$ The area of quadrilateral $AFED$ is $45.$ What is the area of $ABCD?$

[asy] size(5cm); draw((0,0)--(6,0)--(6,6)--(0,6)--cycle); draw((0,6)--(6,0)); draw((3,0)--(6,6)); label("$A$",(0,6),NW); label("$B$",(6,6),NE); label("$C$",(6,0),SE); label("$D$",(0,0),SW); label("$E$",(3,0),S); label("$F$",(4,2),E); [/asy]

$\textbf{(A) } 100 \qquad \textbf{(B) } 108 \qquad \textbf{(C) } 120 \qquad \textbf{(D) } 135 \qquad \textbf{(E) } 144$

2018 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

Solution

Let the sidelength of the square be x. Then $\overline{EC}=\frac{x}{2}$. Notice that $\triangle{ABF}$ and $\triangle{CEF}$ are similar with ratio $2:1$. Than the altitude from $F$ to$\overline{AB}$ has length of $\frac{2x}{3}$. Then $[ABF]=\frac{2x^2}{6}=\frac{x^2}{3}$. Also $[BEC]=\frac{\frac{x}{2}\cdot x}{2}=\frac{x^2}{4}$. That means $[AFED]=x^2-\frac{x^2}{3}-\frac{x^2}{4}=\frac{5}{12}x$. So $[ABCD]=45\cdot\frac{12}{5}=108$ or B The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png