1988 AHSME Problems/Problem 20

Revision as of 01:03, 23 October 2014 by Timneh (talk | contribs) (Created page with "==Problem== In one of the adjoining figures a square of side <math>2</math> is dissected into four pieces so that <math>E</math> and <math>F</math> are the midpoints of opposite...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

In one of the adjoining figures a square of side $2$ is dissected into four pieces so that $E$ and $F$ are the midpoints of opposite sides and $AG$ is perpendicular to $BF$. These four pieces can then be reassembled into a rectangle as shown in the second figure. The ratio of height to base, $XY / YZ$, in this rectangle is

[asy] defaultpen(linewidth(0.7)+fontsize(10)); pair A=(0,1), B=(0,-1), C=(2,-1), D=(2,1), E=(1,-1), F=(1,1), G=(.8,.6); pair X=(4,sqrt(5)), Y=(4,-sqrt(5)), Z=(4+2/sqrt(5),-sqrt(5)), W=(4+2/sqrt(5),sqrt(5)), T=(4,0), U=(4+2/sqrt(5),-4/sqrt(5)), V=(4+2/sqrt(5),1/sqrt(5)); draw(A--B--C--D--A^^B--F^^E--D^^A--G^^rightanglemark(A,G,F)); draw(X--Y--Z--W--X^^T--V--X^^Y--U); label("A", A, NW); label("B", B, SW); label("C", C, SE); label("D", D, NE); label("E", E, S); label("F", F, N); label("G", G, E); label("X", X, NW); label("Y", Y, SW); label("Z", Z, SE); label("W", W, NE); [/asy]

$\textbf{(A)}\ 4\qquad \textbf{(B)}\ 1+2\sqrt{3}\qquad \textbf{(C)}\ 2\sqrt{5}\qquad \textbf{(D)}\ \frac{8+4\sqrt{3}}{3}\qquad \textbf{(E)}\ 5$


Solution

See also

1988 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png