2000 IMO Problems/Problem 1

Revision as of 22:38, 10 December 2017 by Cyborg108 (talk | contribs) (Created page with "Two circles <math>G_1</math> and <math>G_2</math> intersect at two points <math>M</math> and <math>N</math>. Let <math>AB</math> be the line tangent to these circles at <math>...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Two circles $G_1$ and $G_2$ intersect at two points $M$ and $N$. Let $AB$ be the line tangent to these circles at $A$ and $B$, respectively, so that $M$ lies closer to $AB$ than $N$. Let $CD$ be the line parallel to $AB$ and passing through the point $M$, with $C$ on $G_1$ and $D$ on $G_2$. Lines $AC$ and $BD$ meet at $E$; lines $AN$ and $CD$ meet at $P$; lines $BN$ and $CD$ meet at $Q$. Show that $EP=EQ$.