2008 iTest Problems/Problem 94
Problem
Find the largest prime number less than that is a divisor of some integer in the infinite sequence
Solution
The largest prime number less than is ; we claim that this is the answer. Indeed, we claim that the th term divides , where is prime (and hence relatively prime to ).
To do so, we claim that
holds, and since is prime the result follows. Indeed, , where denotes the fractional part of a number. So becomes
By Fermat's Little Theorem, we have , so . Also, is equivalent to the remainder when is divided by , and by Fermat's Little Theorem again, we have . Hence, equation reduces to
as desired.