2012 AMC 12A Problems/Problem 18

Revision as of 08:57, 4 July 2013 by Nathan wailes (talk | contribs) (See Also)

Problem

Triangle $ABC$ has $AB=27$, $AC=26$, and $BC=25$. Let $I$ denote the intersection of the internal angle bisectors of $\triangle ABC$. What is $BI$?

$\textbf{(A)}\ 15\qquad\textbf{(B)}\ 5+\sqrt{26}+3\sqrt{3}\qquad\textbf{(C)}\ 3\sqrt{26}\qquad\textbf{(D)}\ \frac{2}{3}\sqrt{546}\qquad\textbf{(E)}\ 9\sqrt{3}$

Solution

Inscribe circle $C$ of radius $r$ inside triangle $ABC$ so that it meets $AB$ at $Q$, $BC$ at $R$, and $AC$ at $S$. Note that angle bisectors of triangle $ABC$ are concurrent at the center $O$(also $I$) of circle $C$. Let $x=QB$, $y=RC$ and $z=AS$. Note that $BR=x$, $SC=y$ and $AQ=z$. Hence $x+z=27$, $x+y=25$, and $z+y=26$. Subtracting the last 2 equations we have $x-z=-1$ and adding this to the first equation we have $x=13$.

By Heron's formula for the area of a triangle we have that the area of triangle $ABC$ is $\sqrt{39(14)(13)(12)}$. On the other hand the area is given by $(1/2)25r+(1/2)26r+(1/2)27r$. Then $39r=\sqrt{39(14)(13)(12)}$ so that $r^2=56$.

Since the radius of circle $O$ is perpendicular to $BC$ at $R$, we have by the pythagorean theorem $BO^2=BI^2=r^2+x^2=56+169=225$ so that $BI=15$.

See Also

2012 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png