1997 AIME Problems/Problem 10

Revision as of 21:01, 2 March 2017 by Mingxu (talk | contribs) (Solution)

Problem

Every card in a deck has a picture of one shape - circle, square, or triangle, which is painted in one of the three colors - red, blue, or green. Furthermore, each color is applied in one of three shades - light, medium, or dark. The deck has 27 cards, with every shape-color-shade combination represented. A set of three cards from the deck is called complementary if all of the following statements are true:

i. Either each of the three cards has a different shape or all three of the card have the same shape.

ii. Either each of the three cards has a different color or all three of the cards have the same color.

iii. Either each of the three cards has a different shade or all three of the cards have the same shade.

How many different complementary three-card sets are there?

Solution

Solution 1

  • Case 1: All three attributes are the same. This is impossible since sets contain distinct cards.
  • Case 2: Two of the three attributes are the same. There are ${3\choose 2}$ ways to pick the two attributes in question. Then there are $3$ ways to pick the value of the first attribute, $3$ ways to pick the value of the second attribute, and $1$ way to arrange the positions of the third attribute, giving us ${3\choose 2} \cdot 3 \cdot 3 = 27$ ways.
  • Case 3: One of the three attributes are the same. There are ${3\choose 1}$ ways to pick the one attribute in question, and then $3$ ways to pick the value of that attribute. Then there are $3!$ ways to arrange the positions of the next two attributes, giving us ${3\choose 1} \cdot 3 \cdot 3! = 54$ ways.
  • Case 4: None of the three attributes are the same. We fix the order of the first attribute, and then there are $3!$ ways to pick the ordering of the second attribute and $3!$ ways to pick the ordering of the third attribute. This gives us $(3!)^2 = 36$ ways.

Adding the cases up, we get $27 + 54 + 36 = \boxed{117}$.

Solution 2

Let's say we have picked two cards. We now compare their attributes to decide how we can pick the third card to make a complement set. For each of the three attributes, should the two values be the same we have one option - choose a card with the same value for that attribute. Furthermore, should the two be different there is only one option- choose the only value that is remaining. In this way, every two card pick corresponds to exactly one set, for a total of $\binom{27}{2} = 27*13 = 351$ possibilities. Note, however, that each set is generated by ${3\choose 2} = 3$ pairs, so we've overcounted by a multiple of 3 and the answer is $\frac{351}{3} = \boxed{117}$.

Solution 3

We call these three types of complementary sets $A,B,C$ respectively. What we are trying to find is

\[n(A\cup B\cup C)\]

By Principle of Inclusion-Exclusion, this is equivalent to

\[n(A)+n(B)+n(C)-n(A\cap B)-n(B\cap C)-n(A\cap C)+n(A\cap B \cap C)\]

Now, $n(A)=\binom{9}{3}+9^3=813$. Obviously, $n(B)$ and $n(C)$ are the same. Thus, we have

\[2439-n(A\cap B)-n(B\cap C)-n(A\cap C)+n(A\cap B \cap C)\]


Solution 4

Treat the sets as ordered. Then for each of the three criterion, there are $3!=6$ choices if the attribute is different and there are $3$ choices is the attribute is the same. Thus all three attributes combine to a total of $(6+3)^3=729$ possibilities. However if all three attributes are the same then the set must be composed of three cards that are the same, which is impossible. This takes out $3^3=27$ possibilities. Notice that we have counted every set $3!=6$ times by treating the set as ordered. the final solution is then $\frac{729-27}{6}=\boxed{117}$

1997 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png