Euler's Polyhedral Formula

Revision as of 07:59, 23 June 2009 by Arb95 (talk | contribs)

Let $P$ be any convex polyhedron, and let $V$, $E$ and $F$ denote the number of vertices, edges, and faces, respectively. Then $V-E+F=2$.

Observe!

Apply Euler's Polyhedral Formula on the following polyhedra:

$\begin{tabular}{|c|c|c|c|}\hline Shape & Vertices & Edges & Faces\\ \hline Tetrahedron &4  &6 & 4 \\ \hline Cube/Hexahedron & 8 & 12 & 6\\ \hline Octahedron & 6 & 12 & 8\\ \hline Dodecahedron & 20 & 30 & 12\\ \hline \end{tabular}$

See Also

This article is a stub. Help us out by expanding it.