2010 AIME II Problems/Problem 15
Problem 15
In triangle , , , and . Points and lie on with and . Points and lie on B with and . Let be the point, other than , of intersection of the circumcircles of and . Ray meets at . The ratio can be written in the form , where and are relatively prime positive integers. Find .
Solution
Let . since . Since quadrilateral is cyclic, and , yielding and . Multiplying these together yields .
. Also, is the center of spiral similarity of segments and , so . Therefore, , which can easily be computed by the angle bisector theorem to be . It follows that , giving us an answer of .
Note: Spiral similarities may sound complex, but they're really not. The fact that is really just a result of simple angle chasing.
Source: [1] by Zhero
See Also
2010 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.