2016 AMC 8 Problems/Problem 25

Revision as of 09:39, 23 November 2016 by Reaganchoi (talk | contribs) (Created page with "25. A semicircle is inscribed in an isosceles triangle with base <math>16</math> and height <math>15</math> so that the diameter of the semicircle is contained in the base of...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

25. A semicircle is inscribed in an isosceles triangle with base $16$ and height $15$ so that the diameter of the semicircle is contained in the base of the triangle as shown. What is the radius of the semicircle?

[Diagram]

$\textbf{(A) }4 \sqrt{3}\qquad\textbf{(B) } \Dfrac{120}{17}\qquad\textbf{(C) }10\qquad\textbf{(D) }\Dfrac{17\sqrt{2}}{2}\qquad \textbf{(E) \frac{17\sqrt{3}}{2}$ (Error compiling LaTeX. Unknown error_msg)

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

2016 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png