2016 AMC 12B Problems/Problem 12
Problem
All the numbers are written in a array of squares, one number in each square, in such a way that if two numbers of consecutive then they occupy squares that share an edge. The numbers in the four corners add up to . What is the number in the center?
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.
Solution by Mlux: Draw a matrix. Notice that no adjacent numbers could be in the corners since two consecutive numbers must share an edge. Now find 4 nonconsecutive numbers that add up to . Trying works. Place each odd number in the corner in a clockwise order. Then fill in the spaces. There has to be a in between the and . There is a between and . The final grid should similar to this.
is in the middle.
See Also
2016 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 11 |
Followed by Problem 13 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.