2006 AMC 12A Problems/Problem 18

Revision as of 23:01, 10 July 2006 by Matt276eagles (talk | contribs)

Problem

The function $f$ has the property that for each real number $x$ in its domain, $1/x$ is also in its domain and

$f(x)+f\left(\frac{1}{x}\right)=x$

What is the largest set of real numbers that can be in the domain of $f$?

$\mathrm{(A) \ } \{x|x\ne 0\}\qquad \mathrm{(B) \ } \{x|x<0\}$

$\mathrm{(C) \ } \{x|x>0\}$$\mathrm{(D) \ } \{x|x\ne -1\;\mathrm{and}\; x\ne 0\;\mathrm{and}\; x\ne 1\}$$\mathrm{(E) \ }  \{-1,1\}$

Solution

See also