Prime counting function
The prime counting function, denoted , is a function defined on real numbers. The quantity is defined as the number of positive prime numbers less than or equal to . Gauss first conjectured that the prime number theorem , or equivalently, .
The function is asymptotically equivalent to . This is the prime number theorem. It is also asymptotically equivalent to Chebyshev's theta function. It was first proved in 1896 by Jacques Hadamard and by Charles de la Vallée Poussin, working independently.
The prime counting function has many ties to the Riemann zeta function and other branches of analytic number theory. For example, showing that $\pi(x) - \li(x) =$ (Error compiling LaTeX. Unknown error_msg) .
See also
This article is a stub. Help us out by expanding it.