2013 USAMO Problems/Problem 1

Revision as of 18:26, 20 May 2015 by Suli (talk | contribs) (Solution 3)

Problem

In triangle $ABC$, points $P,Q,R$ lie on sides $BC,CA,AB$ respectively. Let $\omega_A$, $\omega_B$, $\omega_C$ denote the circumcircles of triangles $AQR$, $BRP$, $CPQ$, respectively. Given the fact that segment $AP$ intersects $\omega_A$, $\omega_B$, $\omega_C$ again at $X,Y,Z$ respectively, prove that $YX/XZ=BP/PC$

Solution 1

[asy] /* DRAGON 0.0.9.6 Homemade Script by v_Enhance. */ import olympiad; import cse5; size(11cm); real lsf=0.8000; real lisf=2011.0; defaultpen(fontsize(10pt)); /* Initialize Objects */ pair A = (-1.0, 3.0); pair B = (-3.0, -3.0); pair C = (4.0, -3.0); pair P = (-0.6698198198198195, -3.0); pair Q = (1.1406465288818244, 0.43122416534181074); pair R = (-1.6269590345062048, 1.119122896481385); path w_A = circumcircle(A,Q,R); path w_B = circumcircle(B,P,R); path w_C = circumcircle(P,Q,C); pair O_A = midpoint(relpoint(w_A, 0)--relpoint(w_A, 0.5)); pair O_B = midpoint(relpoint(w_B, 0)--relpoint(w_B, 0.5)); pair O_C = midpoint(relpoint(w_C, 0)--relpoint(w_C, 0.5)); pair X = (2)*(foot(O_A,A,P))-A; pair Y = (2)*(foot(O_B,A,P))-P; pair Z = (2)*(foot(O_C,A,P))-P; pair M = 2*foot(P,relpoint(O_B--O_C,0.5-10/lisf),relpoint(O_B--O_C,0.5+10/lisf))-P; pair D = (2)*(foot(O_B,X,M))-M; pair E = (2)*(foot(O_C,X,M))-M; /* Draw objects */ draw(A--B, rgb(0.6,0.6,0.0)); draw(B--C, rgb(0.6,0.6,0.0)); draw(C--A, rgb(0.6,0.6,0.0)); draw(w_A, rgb(0.4,0.4,0.0)); draw(w_B, rgb(0.4,0.4,0.0)); draw(w_C, rgb(0.4,0.4,0.0)); draw(A--P, rgb(0.0,0.2,0.4)); draw(D--E, rgb(0.0,0.2,0.4)); draw(P--D, rgb(0.0,0.2,0.4)); draw(P--E, rgb(0.0,0.2,0.4)); draw(P--M, rgb(0.4,0.2,0.0)); draw(R--M, rgb(0.4,0.2,0.0)); draw(Q--M, rgb(0.4,0.2,0.0)); draw(B--M, rgb(0.0,0.2,0.4)); draw(C--M, rgb(0.0,0.2,0.4)); draw((abs(dot(unit(M-P),unit(B-P))) < 1/2011) ? rightanglemark(M,P,B) : anglemark(M,P,B), rgb(0.0,0.8,0.8)); draw((abs(dot(unit(M-R),unit(A-R))) < 1/2011) ? rightanglemark(M,R,A) : anglemark(M,R,A), rgb(0.0,0.8,0.8)); draw((abs(dot(unit(M-X),unit(A-X))) < 1/2011) ? rightanglemark(M,X,A) : anglemark(M,X,A), rgb(0.0,0.8,0.8)); draw((abs(dot(unit(D-X),unit(P-X))) < 1/2011) ? rightanglemark(D,X,P) : anglemark(D,X,P), rgb(0.0,0.8,0.8)); /* Place dots on each point */ dot(A); dot(B); dot(C); dot(P); dot(Q); dot(R); dot(X); dot(Y); dot(Z); dot(M); dot(D); dot(E); /* Label points */ label("$A$", A, lsf * dir(110)); label("$B$", B, lsf * unit(B-M)); label("$C$", C, lsf * unit(C-M)); label("$P$", P, lsf * unit(P-M) * 1.8); label("$Q$", Q, lsf * dir(90) * 1.6); label("$R$", R, lsf * unit(R-M) * 2); label("$X$", X, lsf * dir(-60) * 2); label("$Y$", Y, lsf * dir(45)); label("$Z$", Z, lsf * dir(5)); label("$M$", M, lsf * dir(M-P)*2); label("$D$", D, lsf * dir(150)); label("$E$", E, lsf * dir(5));[/asy]

In this solution, all lengths and angles are directed.

Firstly, it is easy to see by that $\omega_A, \omega_B, \omega_C$ concur at a point $M$. Let $XM$ meet $\omega_B, \omega_C$ again at $D$ and $E$, respectively. Then by Power of a Point, we have \[XM \cdot XE = XZ \cdot XP \quad\text{and}\quad XM \cdot XD = XY \cdot XP\] Thusly \[\frac{XY}{XZ} = \frac{XD}{XE}\] But we claim that $\triangle XDP \sim \triangle PBM$. Indeed, \[\measuredangle XDP = \measuredangle MDP = \measuredangle MBP = - \measuredangle PBM\] and \[\measuredangle DXP = \measuredangle MXY = \measuredangle MXA = \measuredangle MRA = \measuredangle MRB = \measuredangle MPB = -\measuredangle BPM\] Therefore, $\frac{XD}{XP} = \frac{PB}{PM}$. Analogously we find that $\frac{XE}{XP} = \frac{PC}{PM}$ and we are done.


courtesy v_enhance


Solution 2

Diagram Refer to the Diagram link.

By Miquel's Theorem, there exists a point at which $\omega_A, \omega_B, \omega_C$ intersect. We denote this point by $M.$ Now, we angle chase: \[\angle YMX = 180^{\circ} - \angle YXM - \angle XYM\]\[= 180^{\circ} - \angle AXM - \angle PYM\]\[= \left(180^{\circ} - \angle ARM\right) - \angle PRM\]\[= \angle BRM - \angle PRM\]\[= \angle BRP = \angle BMP.\] In addition, we have \[\angle ZMX = 180^{\circ} - \angle MZY - \angle ZYM - \angle YMX\]\[= 180^{\circ} - \angle MZP - \angle PYM - \angle BMP\]\[= 180^{\circ} - \angle MCP - \angle PBM - \angle BMP\]\[= \left(180^{\circ} - \angle PBM - \angle BMP\right) - \angle MCP\]\[= \angle BPM - \angle MCP\]\[= 180^{\circ} - \angle MPC - \angle MCP\]\[= \angle CMP.\] Now, by the Ratio Lemma, we have \[\frac{XY}{XZ} = \frac{MY}{MZ} \cdot \frac{\sin \angle YMX}{\sin \angle ZMX}\]\[= \frac{\sin \angle YZM}{\sin \angle ZYM} \cdot \frac{\sin \angle BMP}{\sin \angle CMP}\] (by the Law of Sines in $\triangle MZY$)\[= \frac{\sin \angle PZM}{\sin \angle PYM} \cdot \frac{\sin \angle BMP}{\sin \angle CMP}\]\[= \frac{\sin \angle PCM}{\sin \angle PBM} \cdot \frac{\sin \angle BMP}{\sin \angle CMP}\]\[= \frac{MB}{MC} \cdot \frac{\sin \angle BMP}{\sin \angle CMP}\] (by the Law of Sines in $\triangle MBC$)\[= \frac{PB}{PC}\] by the Ratio Lemma. The proof is complete.

Solution 3

Use directed angles modulo $\pi$.

Lemma. $\angle{XRY} \equiv \angle{XQZ}.$

Proof. \[\angle{XRY} \equiv \angle{XRA} - \angle{YRA} \equiv \angle{XQA} + \angle{YRB} \equiv \angle{XQA} + \angle{CPY} = \angle{XQA} + \angle{AQZ} = \angle{XQZ}.\]

Now, it follows that (now not using directed angles) \[\frac{XY}{YZ} = \frac{\frac{XY}{\sin \angle{XRY}}}{\frac{YZ}{\sin \angle{XQZ}}} = \frac{\frac{RY}{\sin \angle{RXY}}}{\frac{QZ}{\sin \angle{QXZ}}} = \frac{BP}{PC}\] using the facts that $ARY$ and $APB$, $AQZ$ and $APC$ are similar triangles, and that $\frac{RA}{\sin \angle{RXA}} = \frac{QA}{\sin \angle{QXA}}$ equals twice the circumradius of the circumcircle of $AQR$.

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png