1987 AHSME Problems/Problem 16

Revision as of 07:46, 23 October 2014 by Timneh (talk | contribs) (Created page with "==Problem== A cryptographer devises the following method for encoding positive integers. First, the integer is expressed in base <math>5</math>. Second, a 1-to-1 correspondence...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

A cryptographer devises the following method for encoding positive integers. First, the integer is expressed in base $5$. Second, a 1-to-1 correspondence is established between the digits that appear in the expressions in base $5$ and the elements of the set $\{V, W, X, Y, Z\}$. Using this correspondence, the cryptographer finds that three consecutive integers in increasing order are coded as $VYZ, VYX, VVW$, respectively. What is the base-$10$ expression for the integer coded as $XYZ$?

$\textbf{(A)}\ 48 \qquad \textbf{(B)}\ 71 \qquad \textbf{(C)}\ 82 \qquad \textbf{(D)}\ 108 \qquad \textbf{(E)}\ 113$

See also

1987 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png