2015 AIME II Problems/Problem 7

Revision as of 18:37, 26 March 2015 by Swe1 (talk | contribs) (Create Page)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Triangle $ABC$ has side lengths $AB = 12$, $BC = 25$, and $CA = 17$. Rectangle $PQRS$ has vertex $P$ on $\overline{AB}$, vertex $Q$ on $\overline{AC}$, and vertices $R$ and $S$ on $\overline{BC}$. In terms of the side length $PQ = w$, the area of $PQRS$ can be expressed as the quadratic polynomial

Area($PQRS$) = $\alpha w - \beta \cdot w^2$.

Then the coefficient $\beta = \frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Solution