2005 AMC 10B Problems/Problem 22

Revision as of 21:38, 26 November 2013 by Mathcool2009 (talk | contribs) (Solution)

Problem

For how many positive integers n less than or equal to $24$ is $n!$ evenly divisible by $1 + 2 + \ldots + n$?

Solution

Since $1 + 2 + \cdots + n = \frac{n(n+1)}{2}$, the condition is equivalent to having an integer value for $\frac{n!}{\frac{n(n+1)}{2}}$. This reduces, when $n\ge 1$, to having an integer value for $\frac{2(n-1)!}{n+1}$. This fraction is an integer unless $n+1$ is an odd prime. There are 8 odd primes less than or equal to 25, so there are $24 - 8 = \boxed{\text{(C)}16}$ numbers less than or equal to 24 that satisfy the condition.

See Also

2005 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png