2011 UNCO Math Contest II Problems/Problem 4

Revision as of 20:42, 19 October 2014 by Timneh (talk | contribs) (Created page with "== Problem == Let <math>A = \left\{ 2,5,10,17,\cdots,n^2+1,\cdots\right\}</math> be the set of all positive squares plus <math>1</math> and <math>B = \left\{101, 104, 109, 116,\...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Let $A = \left\{ 2,5,10,17,\cdots,n^2+1,\cdots\right\}$ be the set of all positive squares plus $1$ and $B = \left\{101, 104, 109, 116,\cdots,m^2 + 100,\cdots\right\}$ be the set of all positive squares plus $100$.

(a) What is the smallest number in both $A$ and $B$?

(b) Find all numbers that are in both $A$ and $B$.


Solution

See Also

2011 UNCO Math Contest II (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10
All UNCO Math Contest Problems and Solutions