2001 IMO Problems
Problem 1
Consider an acute triangle . Let be the foot of the altitude of triangle issuing from the vertex , and let be the circumcenter of triangle . Assume that . Prove that .
Problem 2
Let be positive real numbers. Prove that .
Problem 3
Twenty-one girls and twenty-one boys took part in a mathematical competition. It turned out that each contestant solved at most six problems, and for each pair of a girl and a boy, there was at least one problem that was solved by both the girl and the boy. Show that there is a problem that was solved by at least three girls and at least three boys.
Problem 4
Let be integers where is odd. Let denote a permutation of the integers . Let . Show that for some distinct permutations , the difference is a multiple of .