1993 AHSME Problems/Problem 25

Revision as of 00:46, 27 September 2014 by Timneh (talk | contribs) (Created page with "== Problem == <asy> draw(circle((0,0),10),black+linewidth(.75)); MP(")",(0,0),S); </asy> Let <math>S</math> be the set of points on the rays forming the sides of a <math>120^\ci...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

[asy] draw(circle((0,0),10),black+linewidth(.75)); MP(")",(0,0),S); [/asy]

Let $S$ be the set of points on the rays forming the sides of a $120^\circ$ angle, and let $P$ be a fixed point inside the angle on the angle bisector. Consider all distinct equilateral triangles $PQR$ with $Q$ and $R$ in $S$. (Points $Q$ and $R$ may be on the same ray, and switching the names of $Q$ and $R$ does not create a distinct triangle.) There are

$\text{(A) exactly 2 such triangles} \quad \text{(B) exactly 3 such triangles} \quad \text{(C) exactly 7 such triangles} \quad \text{(D) exactly 15 such triangles} \quad \text{(E) more than 15 such triangles}$

Solution

$\fbox{E}$

See also

1993 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png