1979 USAMO Problems/Problem 4

Revision as of 18:08, 3 July 2013 by Etude (talk | contribs)

Problem

$P$ lies between the rays $OA$ and $OB$. Find $Q$ on $OA$ and $R$ on $OB$ collinear with $P$ so that $\frac{1}{PQ}\plus{} \frac{1}{PR}$ (Error compiling LaTeX. Unknown error_msg) is as large as possible.

Solution

Perform the inversion with center $P$ and radius $\overline{PO}.$ Lines $OA,OB$ go to the circles $(O_1),(O_2)$ passing through $P,O$ and the line $QR$ cuts $(O_1),(O_2)$ again at the inverses $Q',R'$ of $Q,R.$ Hence

$\frac{1}{PQ}+\frac{1}{PR}=\frac{PQ'+PR'}{PO^2}=\frac{Q'R'}{PO^2}$

Thus, it suffices to find the line through $P$ that maximizes the length of the segment $\overline{Q'R'}.$ If $M,N$ are the midpoints of $PQ',PR',$ i.e. the projections of $O_1,O_2$ onto $QR,$ then from the right trapezoid $O_1O_2NM,$ we deduce that $O_1O_2 \ge MN = \frac{_1}{^2}Q'R'.$ Consequently, $2 \cdot O_1O_2$ is the greatest possible length of $Q'R',$ which obviously occurs when $O_1O_2NM$ is a rectangle. Hence, $Q,R$ are the intersections of $OA,OB$ with the perpendicular to $PO$ at $P.$

See Also

1979 USAMO (ProblemsResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5
All USAMO Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png