2014 AMC 12A Problems/Problem 17

Revision as of 19:40, 7 February 2014 by TheMaskedMagician (talk | contribs) (Created page with "==Problem== A <math>4\times 4\times h</math> rectangular box contains a sphere of radius <math>2</math> and eight smaller spheres of radius <math>1</math>. The smaller spheres a...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

A $4\times 4\times h$ rectangular box contains a sphere of radius $2$ and eight smaller spheres of radius $1$. The smaller spheres are each tangent to three sides of the box, and the larger sphere is tangent to each of the smaller spheres. What is $h$?

[asy] import three; import solids; real h=2+2*sqrt(7); currentprojection=orthographic((0.75,-5,h/2+1),target=(2,2,h/2)); currentlight=light(1,0,3); draw((0,0,0)--(4,0,0)--(4,4,0)--(0,4,0)--(0,0,0)^^(4,0,0)--(4,0,h)--(4,4,h)--(0,4,h)--(0,4,0)); draw(shift((1,3,1))*unitsphere,black); draw(shift((3,3,1))*unitsphere,black); draw(shift((3,1,1))*unitsphere,black); draw(shift((1,1,1))*unitsphere,black); draw(shift((2,2,h/2))*scale(2,2,2)*unitsphere,black); draw(shift((1,3,h-1))*unitsphere,black); draw(shift((3,3,h-1))*unitsphere,black); draw(shift((3,1,h-1))*unitsphere,black); draw(shift((1,1,h-1))*unitsphere,black); draw((0,0,0)--(0,0,h)--(4,0,h)^^(0,0,h)--(0,4,h)); [/asy]

$\textbf{(A) }2+2\sqrt 7\qquad \textbf{(B) }3+2\sqrt 5\qquad \textbf{(C) }4+2\sqrt 7\qquad \textbf{(D) }4\sqrt 5\qquad \textbf{(E) }4\sqrt 7\qquad$