User talk:Bobthesmartypants/Sandbox
Bobthesmartypants's Sandbox
Solution 1
First, continue to hit
at
. Also continue
to hit
at
.
We have that . Because
, we have
.
Similarly, because , we have
.
Therefore, .
We also have that because
is a parallelogram, and
.
Therefore, . This means that
, so
.
Therefore, .
Solution 2
Note that is rational and
is not divisible by
nor
because
.
This means the decimal representation of is a repeating decimal.
Let us set as the block that repeats in the repeating decimal:
.
(The block is written without the usual overline used to signify one number so as not to confuse it with the notation for repeating decimal)
The fractional representation of this repeating decimal would be .
Taking the reciprocal of both sides you get .
Multiplying both sides by gives
.
Since we divide
on both sides of the equation to get
.
Because is not divisible by
(therefore
) since
and
is prime, it follows that
.