2009 AMC 10B Problems/Problem 11

Revision as of 16:30, 3 March 2009 by Misof (talk | contribs) (New page: == Problem == How many <math>7</math>-digit palindromes (numbers that read the same backward as forward) can be formed using the digits <math>2</math>, <math>2</math>, <math>3</math>, <ma...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

How many $7$-digit palindromes (numbers that read the same backward as forward) can be formed using the digits $2$, $2$, $3$, $3$, $5$, $5$, $5$?

$\text{(A) } 6 \qquad \text{(B) } 12 \qquad \text{(C) } 24 \qquad \text{(D) } 36 \qquad \text{(E) } 48$

Solution

A seven-digit palindrome is a number of the form $\overline{abcdcba}$. Clearly, $d$ must be $5$, as we have an odd number of fives. We are then left with $\{a,b,c\} = \{2,3,5\}$. Each of the $\boxed{6}$ permutations of the set $\{2,3,5\}$ will give us one palindrome.

See Also

2009 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions