2013 AMC 12B Problems/Problem 25

Revision as of 15:02, 22 February 2013 by Zverevab (talk | contribs) (Created page with "==Problem== Let <math>G</math> be the set of polynomials of the form <cmath> P(z)=z^n+c_{n-1}z^{n-1}+\cdots+c_2z^2+c_1z+50, </cmath> where <math> c_1,c_2,\cdots, c_{n-1} </math>...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Let $G$ be the set of polynomials of the form \[P(z)=z^n+c_{n-1}z^{n-1}+\cdots+c_2z^2+c_1z+50,\] where $c_1,c_2,\cdots, c_{n-1}$ are integers and $P(z)$ has distinct roots of the form $a+ib$ with $a$ and $b$ integers. How many polynomials are in $G$?

$\textbf{(A)}\ 288\qquad\textbf{(B)}\ 528\qquad\textbf{(C)}\ 576\qquad\textbf{(D}}\ 992\qquad\textbf{(E)}\ 1056$ (Error compiling LaTeX. Unknown error_msg)