1976 IMO Problems/Problem 4

Revision as of 09:20, 18 June 2008 by 1=2 (talk | contribs) (I SOLVED AN IMO PROBLEM! :D)

Problem

Determine the greatest number, who is the product of some positive integers, and the sum of these numbers is $1976.$

Solution

Since $3*3=2*2*2+1$, 3's are more efficient than 2's. We try to prove that 3's are more efficient than anything:

Let there be a positive integer $x$. If $3$ is more efficient than $x$, then $x^3<3^x$. We try to prove that all integers greater than 3 are less efficient than 3:

When $x$ increases by 1, then the RHS is multiplied by 3. The other side is multiplied by $\dfrac{(x+1)^3}{x^3}$, and we must prove that this is less than 3 for all $x$ greater than 3.

$\dfrac{(x+1)^3}{x^3}<3\Rightarrow \dfrac{x+1}{x}<\sqrt[3]{3}\Rightarrow 1<(\sqrt[3]{3}-1)x$

$\dfrac{1}{\sqrt[3]{3}-1}<x$

Thus we need to prove that $\dfrac{1}{\sqrt[3]{3}-1}<4$. Simplifying, we get $5<4\sqrt[3]{3}\Rightarrow 125<64*3=192$, which is true. Working backwards, we see that all $x$ greater than 3 are less efficient than 3, so we try to use the most 3's as possible:

$\dfrac{1976}{3}=658.6666$, so the greatest product is $\boxed{3^{658}\cdot 2}$.

See also

1976 IMO (Problems) • Resources
Preceded by
Problem 3
1 2 3 4 5 6 Followed by
Problem 5
All IMO Problems and Solutions