1997 USAMO Problems/Problem 3

Revision as of 16:08, 12 April 2012 by 1=2 (talk | contribs) (added solution tag, USAMO box, and category.)

Problem

Prove that for any integer $n$, there exists a unique polynomial $Q$ with coefficients in $\{0,1,...,9\}$ such that $Q(-2)=Q(-5)=n$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See Also

1997 USAMO (ProblemsResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5
All USAMO Problems and Solutions