2010 AIME I Problems/Problem 2

Revision as of 12:15, 17 March 2010 by Azjps (talk | contribs) (credit to gaussintraining)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Find the remainder when $9 \times 99 \times 999 \times \cdots \times \underbrace{99\cdots9}_{\text{999 9's}}$ is divided by $1000$.

Solution

Note that $999\equiv - 1\pmod{1000}$, $9999\equiv - 1\pmod{1000}$, $\dots$, $\underbrace{99\cdots9}_{\text{999 9's}}\equiv - 1\pmod{1000}$ (see modular arithmetic). That is a total of $999 - 3 + 1 = 997$ integers, so all those integers multiplied out are congruent to $- 1\pmod{1000}$. Thus, the entire expression is congruent to $( - 1)(9)(99) = - 891\equiv\boxed{109}\pmod{1000}$.

See also

2010 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions