2001 IMO Shortlist Problems/G6
Problem
Let be a triangle and an exterior point in the plane of the triangle. Suppose the lines , , meet the sides , , (or extensions thereof) in , , , respectively. Suppose further that the areas of triangles , , are all equal. Prove that each of these areas is equal to the area of triangle itself.
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.