1971 Canadian MO Problems
This is an empty template page which needs to be filled. You can help us out by finding the needed content and editing it in. Thanks.
Contents
Problem 1
is a chord of a circle such that and Let be the center of the circle. Join and extend to cut the circle at Given find the radius of the circle
Problem 2
Let and be positive real numbers such that . Show that .
Problem 3
is a quadrilateral with . If is greater than , prove that .
Problem 4
Determine all real numbers such that the two polynomials and have at least one root in common.
Problem 5
Let , where the coefficients are integers. If and are both odd, show that has no integral roots.
Problem 6
Show that, for all integers , is not a multiple of 121. Solution