2000 AMC 10 Problems/Problem 9

Revision as of 21:52, 8 January 2009 by 5849206328x (talk | contribs) (Problem)

Problem

If $|x-2|=p$, where $x<2$, then $x-p=$

$\mathrm{(A)}\ -2 \qquad\mathrm{(B)}\ 2 \qquad\mathrm{(C)}\ 2-2p \qquad\mathrm{(D)}\ 2p-2 \qquad\mathrm{(E)}\ |2p-2|$

Solution

$|x-2|=p$

$x<2$, so $2-x=p$.

$x+p=2$.

$x-p=2-2p$.

$\boxed{\text{C}}$

See Also

2000 AMC 10 (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions