1983 USAMO Problems/Problem 2

Revision as of 18:07, 13 November 2011 by Sjaelee (talk | contribs) (Created page with "Lemma: <cmath>2(x_1^2+x_2^2+\cdots+x_5^2)\ge</cmath> <cmath>x_1x_2+x_1x_3+\cdots+x_4x_5</cmath> We solve this cylicallly by showing <cmath>\frac{1}{2}x^2+\frac{1}{2}y^2\ge x...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Lemma:

\[2(x_1^2+x_2^2+\cdots+x_5^2)\ge\]

\[x_1x_2+x_1x_3+\cdots+x_4x_5\]

We solve this cylicallly by showing

\[\frac{1}{2}x^2+\frac{1}{2}y^2\ge xy\]

By the trivial inequality, $(x-y)^2\ge 0$, or $x^2+y^2-2xy\ge 0$.

\[x^2+y^2\ge 2xy\]

Dividing by $2$ gives us the desired.

Making such an inequality for all the variable pairs and summing

them, we find the lemma is true.[/hide]

We start by plugging in our Vieta's: Let our roots be

$x_1,x_2,\cdots,x_5$. This means be Vieta's that

$a=x_1+x_2+\cdots+x_5, b=x_1x_2+x_1x_3+\cdots+x_4x_5$

If we show that for all real $x_1,x_2,\cdots, x_5$ that $2a^2\ge 5b$,

then we have a contradiction and all of $x_1,x_2,\cdots, x_5$ cannot

be real. We start by rewriting $2a^2\ge 5b$ as

\[2(x_1+x_2+\cdots+x_5)^2\ge\]

\[5(x_1x_2+x_1x_3+\cdots+x_4x_5)\]

We divide by $2$ and find

\[(x_1+x_2+\cdots+x_5)^2\ge\]

\[\frac{5}{2}(x_1x_2+x_1x_3+\cdots+x_4x_5)\]

Expanding the LHS, we have

\[x_1^2+x_2^2+\cdots+x_5^2+2(x_1x_2+x_1x_3+\cdots+x_4x_5)\ge\]

\[\frac{5}{2}(x_1x_2+x_1x_3+\cdots+x_4x_5)\]

Aha! We subtract out the second symmetric sums, and then multiply

by $2$ to find

\[2x_1^2+2x_2^2+\cdots+2x_5^2\ge\]

\[x_1x_2+x_1x_3+\cdots+x_4x_5\]

which is true by our lemma.