2011 AIME I Problems/Problem 13
Problem
A cube with side length 10 is suspended above a plane. The vertex closest to the plane is labeled . The three vertices adjacent to vertex are at heights 10, 11, and 12 above the plane. The distance from vertex to the plane can be expressed as , where , , and are positive integers, and . Find .
See also
2011 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
Set the cube at the origin with the three vertices along the axes and the plane equal to , where . Then the (directed) distance from any point (x,y,z) to the plane is . So, by looking at the three vertices, we have , and by rearranging and summing, .
Solving the equation is easier if we substitute , to get , or . The distance from the origin to the plane is simply d, which is equal to , so .