2001 AMC 10 Problems/Problem 10

Revision as of 14:50, 16 March 2011 by Pidigits125 (talk | contribs) (Solution)

Problem

If $x$, $y$, and $z$ are positive with $xy = 24$, $xz = 48$, and $yz = 72$, then $x + y + z$ is

$\textbf{(A) }18\qquad\textbf{(B) }19\qquad\textbf{(C) }20\qquad\textbf{(D) }22\qquad\textbf{(E) }24$

Solution

Look at the first two equations in the problem.

$xy=24$ and $xz=48$.

We can say that $2y=z$.

Given $2y=z$, we can substitute $z$ for $2y$ and find

$2y^2=72$ $y^2=36$ $y=6$ $2y=z=12$.

We can replace y into the first equation. $6x=24$ $x=4$.

Since we know every variable's value, we can substitute it in for $x+y+z = 4+6+12 = \boxed{\textbf{(D) }22}$.