Limit point

Revision as of 09:58, 29 June 2008 by JBL (talk | contribs)

Given a topological space $X$ and a subset $S$ of $X$, an element $x$ of $X$ is called a limit point of $S$ if every neighborhood of $x$ contains some element of $S$ other than $x$.

When $X$ is a metric space, it follows that every neighborhood of $x$ must contain infinitely many elements of $S$. A point $x$ such that each neighborhood of $x$ contains uncountably many elements of $S$ is called a condensation point of $S$.

Examples

  • Let $X = \mathbb{R}$ and $S =\mathbb{Q}$ be the set of rational numbers. Then every point of $X$ is a limit point of $S$. Equivalently, we may say that $\mathbb{Q}$ is dense in $\mathbb{R}$.

This article is a stub. Help us out by expanding it.