2009 AMC 10B Problems/Problem 15

Revision as of 11:13, 1 March 2009 by VelaDabant (talk | contribs) (New page: {{duplicate|2009 AMC 10B #15 and 2009 AMC 12B #8}} == Problem == When a bucket is two-thirds full of water, the bucket and water weigh ...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
The following problem is from both the 2009 AMC 10B #15 and 2009 AMC 12B #8, so both problems redirect to this page.

Problem

When a bucket is two-thirds full of water, the bucket and water weigh $a$ kilograms. When the bucket is one-half full of water the total weight is $b$ kilograms. In terms of $a$ and $b$, what is the total weight in kilograms when the bucket is full of water?

$\mathrm{(A)}\ \frac23a + \frac13b\qquad \mathrm{(B)}\ \frac32a - \frac12b\qquad \mathrm{(C)}\ \frac32a + b\qquad \mathrm{(D)}\ \frac32a + 2b\qquad \mathrm{(E)}\ 3a - 2b$

Solution

Let $x$ be the weight of the bucket and let $y$ be the weight of the water in a full bucket. Then we are given that $x + \frac 23y = a$ and $x + \frac 12y = b$. Hence $\frac 16y = a-b$, so $y = 6a-6b$. Thus $x = b - \frac 12 (6a-6b) = -3a + 4b$. Finally $x + y = \boxed {3a-2b}$. The answer is $\mathrm{(E)}$.

See also

2009 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2009 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions