2000 AIME II Problems/Problem 5

Revision as of 19:33, 18 March 2008 by Chess64 (talk | contribs)

Problem

Given eight distinguishable rings, let $n$ be the number of possible five-ring arrangements on the four fingers (not the thumb) of one hand. The order of rings on each finger is significant, but it is not required that each finger have a ring. Find the leftmost three nonzero digits of $n$.

Solution

There are $\binom{8}{5}$ ways to choose the rings, $\binom{8}{3}$ ways to distribute the rings among the fingers, and $5!$ distinct color arrangements.

Multiplying gives the answer: $\binom{8}{5}\binom{8}{3}5! = 376320$, and the three leftmost digits are $\boxed{376}$.

2000 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions