2004 AMC 12A Problems/Problem 24

Revision as of 16:33, 26 February 2008 by Chickendude (talk | contribs) (Solution with Asymptote)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem 24

A plane contains points $A$ and $B$ with $AB = 1$. Let $S$ be the union of all disks of radius $1$ in the plane that cover $\overline{AB}$. What is the area of $S$?

$\text {(A)} 2\pi + \sqrt3 \qquad \text {(B)} \frac {8\pi}{3} \qquad \text {(C)} 3\pi - \frac {\sqrt3}{2} \qquad \text {(D)} \frac {10\pi}{3} - \sqrt3 \qquad \text {(E)}4\pi - 2\sqrt3$


Solution

[asy] pair A=(-.5,0), B=(.5,0), C=(0,3**(.5)/2), D=(0,-3**(.5)/2);  draw(arc(A,2,-60,60),blue); draw(arc(B,2,120,240),blue); draw(circle(C,1),red);  draw(A--(.5,3^.5)); draw(B--(-.5,3^.5)); draw(A--(.5,-3^.5)); draw(B--(-.5,-3^.5)); draw(A--B);  dot(A);dot(B);dot(C);dot(D);  label("\(1\)",(0,0),N); label("\(1\)",A/2+D/2,W); label("\(1\)",A/2+C/2,W); label("\(1\)",B/2+D/2,E); label("\(1\)",B/2+C/2,E); label("\(1\)",A/2+3D/2,W); label("\(1\)",A/2+3C/2,W); label("\(1\)",B/2+3D/2,E); label("\(1\)",B/2+3C/2,E);  label("\(A\)",A,W); label("\(B\)",B,E); label("\(C\)",C,W); label("\(D\)",D,E); [/asy]

As the red circles move about segment $AB$, they cover the area we are looking for. On the left side, the circle must move around pivoted on $B$. On the right side, the circle must move pivoted on $A$ However, at the top and bottom, the circle must lie on both A and B, giving us our upper and lower bounds.

This egg-like shape is $S$. [asy] pair A=(-.5,0), B=(.5,0), C=(0,3**(.5)/2), D=(0,-3**(.5)/2);  draw(arc(A,2,-60,60),blue); draw(arc(B,2,120,240),blue); draw(arc(C,1,60,120),red); draw(arc(D,1,-120,-60),red);  draw(A--(.5,3^.5)); draw(B--(-.5,3^.5)); draw(A--(.5,-3^.5)); draw(B--(-.5,-3^.5)); draw(A--B);  dot(A);dot(B);dot(C);dot(D); label("\(A\)",A,W); label("\(B\)",B,E); label("\(C\)",C,W); label("\(D\)",D,E);  label("\(1\)",(0,0),N); label("\(1\)",A/2+D/2,W); label("\(1\)",A/2+C/2,W); label("\(1\)",B/2+D/2,E); label("\(1\)",B/2+C/2,E); label("\(1\)",A/2+3D/2,W); label("\(1\)",A/2+3C/2,W); label("\(1\)",B/2+3D/2,E); label("\(1\)",B/2+3C/2,E); [/asy]

Now, the hard part is over. Finding the area of this shape is not challenging.

$A = 2(Blue Sector) + 2(Red Sector) - 2(Equilateral Triangle)$

$A = 2(\frac{120^\circ}{360^\circ}\pi (2)^2) + 2(\frac{60^\circ}{360^\circ}\pi (1)^2) - 2(\frac{(1)^2\sqrt{3}}{4})$

$A = \frac{8\pi}{3} + \frac{\pi}{3} - \frac{\sqrt{3}}{2}$

$A = 3\pi - \frac{\sqrt{3}}{2} \Rightarrow \text {(C)}$

See Also

2004 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions