2004 AIME I Problems/Problem 15

Revision as of 15:24, 27 April 2008 by I like pie (talk | contribs) (LaTeX style)

Problem

For all positive integers $x$, let

\[f(x)=\begin{cases}1 & \text{if x = 1}}\\ \frac x{10} & \text{if x is divisible by 10}\\ x+1 & \text{otherwise}\end{cases}\] (Error compiling LaTeX. Unknown error_msg)

and define a sequence as follows: $x_1=x$ and $x_{n+1}=f(x_n)$ for all positive integers $n$. Let $d(x)$ be the smallest $n$ such that $x_n=1$. (For example, $d(100)=3$ and $d(87)=7$.) Let $m$ be the number of positive integers $x$ such that $d(x)=20$. Find the sum of the distinct prime factors of $m$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also

2004 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Last Question
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions