Nilpotent group
A nilpotent group can be thought of a group that is only finitely removed from an abelian group. Specifically, it is a group such that is the trivial group, for some integer , where is the th term of the lower central series of . The least integer satisfying this condition is called the nilpotency class of . Using transfinite recursion, the notion of nilpotency class can be extended to any ordinal.
All abelian groups have nilpotency class at most 1; the trivial group is the only group of nilpotency class 0.
Theorem. Let be a group, and let be a positive integer. Then the following three statements are equivalent:
- The group has nilpotency class at most ;
- For every subgroup of , there exist subgroups , such that , , and is a normal subgroup of such that is commutative, for all integers .
- The group has a subgroup in the center of such that has nilpotency class at most .
Proof. First, we show that (1) implies (2). Set ; we claim that this suffices. We wish first to show that normalizes . Since evidently normalizes , it suffices to show that does; to this end, let be an element of and an element of . Then Thus normalizes . To prove that is commutative, we note that is commmutative, and that the canonical homomorphism from to is surjective; thus is commutative.
To show that (2) implies (1), we may take .
To show that (1) implies (3), we may take .
Finally, we show that (3) implies (1). Let be the canonical homomorphism of onto . Then . In particular, . Hence is a subset of , so it lies in the center of , and ; thus the nilpotency class of is at most , as desired.